Intensely Colored Mixed-Valence Iron(II) Iron(III) Formate Analogue of Prussian Blue Exhibits Néel N -Type Ferrimagnetism

Karl S. Hagen, ${ }^{,+\dagger}$ Sunil G. Naik, ${ }^{\ddagger}$ Boi Hanh Huynh, ${ }^{\ddagger}$ Antonio Masello, ${ }^{\S}$ and George Christou ${ }^{\S}$
Departments of Chemistry and Physics, Emory University, Atlanta, Georgia 30322, and Department of Chemistry, University of Florida, Gainesville, Florida 32611

Received February 11, 2009; E-mail: khagen@emory.edu

The presence of mixed-valence iron(II) and iron(III) imparts important properties to minerals such as magnetite $\left(\mathrm{Fe}_{3} \mathrm{O}_{4}\right)$ and pigments such as Prussian Blue (PB) $\left(\mathrm{Fe}^{\mathrm{II}}{ }_{4}\left[\mathrm{Fe}^{\mathrm{II}}(\mathrm{CN})_{6}\right]_{3} \cdot x \mathrm{H}_{2} \mathrm{O}\right)$, which has been called the first coordination compound. ${ }^{1}$ An extensive body of research in recent years on PB and its transitionmetal analogues has been motivated by their properties, including high-temperature molecular magnetism. ${ }^{2}$ There is a comparable level of interest in coordination polymers utilizing larger multitopic ligands to obtain larger cavities in open-framework structures, ${ }^{3}$ a good portion of which have been obtained using metal carboxylates. ${ }^{4}$ Mixed-valence polyiron(II,III) oxalates $\mathrm{A}\left[\mathrm{Fe}^{\mathrm{II}} \mathrm{Fe}^{\mathrm{III}}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)_{3}\right]$ ($\mathrm{A}=\mathrm{R}_{4} \mathrm{~N}^{+}$cation) have been shown by Day and co-workers ${ }^{5}$ to exhibit Néel N-type ferrimagnetism with some cations but not others. The rare negative magnetization observed in the twodimensional (2D) polyiron(II,III) oxalates has not been seen in 3D molecular-based network magnets ${ }^{6}$ until the present work.

The reported framework structures of the anionic divalent formates $\mathrm{A}\left[\mathrm{M}^{\mathrm{I}}(\mathrm{HCOO})_{3}\right](\mathbf{1})\left[\mathrm{A}=\mathrm{NH}_{4}{ }^{+}, \mathrm{Me}_{2} \mathrm{NH}_{2}{ }^{+},\left(\mathrm{Me}_{2} \mathrm{enH}_{2}{ }^{2+}\right)_{1_{2}} ; \mathrm{M}=\mathrm{Mn}\right.$, $\mathrm{Co}, \mathrm{Ni}]^{7}$ and neutral trivalent formates, $\left[\mathrm{M}^{\mathrm{II}}(\mathrm{HCOO})_{3}\right] \cdot \mathrm{X}(\mathbf{2})(\mathrm{M}=$ $\mathrm{Mn},{ }^{8} \mathrm{Fe},{ }^{9} \mathrm{Al},{ }^{8} \mathrm{Ga},{ }^{8} \mathrm{In} ;{ }^{8} \mathrm{X}=\mathrm{HCOOH}, \mathrm{CO}_{2}$) are remarkably similar, with cations in the cavities of the former and small neutral molecules such as formic acid or CO_{2} in those of the latter. This suggests that it should be possible to isolate mixed-valence structures of iron(II) and iron(III) related to PB as well as 3D anionic polymetal(II,III) oxalates.

Reactions of $\mathrm{Fe}_{3}(\mathrm{HCOO})_{6} \cdot$ DMF in a combination of DMF and concentrated formic acid afford mixtures of colorless crystals of $\left(\mathrm{Me}_{2} \mathrm{NH}_{2}\right)\left[\mathrm{Fe}(\mathrm{HCOO})_{3}\right](\mathbf{1})$ and $\mathrm{Fe}_{3}(\mathrm{HCOO})_{6}$ (orthorhombic form) and black crystals of $\left(\mathrm{Me}_{2} \mathrm{NH}_{2}\right)\left[\mathrm{Fe}_{2}(\mathrm{HCOO})_{6}\right](3) .{ }^{10}$ These have to be mechanically separated. An alternative synthetic approach that affords pure crystalline samples of $\mathbf{3}$ involves heating the mixedvalence cluster $\left[\mathrm{Fe}_{3} \mathrm{O}\left(\mathrm{CH}_{3} \mathrm{COO}\right)_{6}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}\right](\mathbf{4})^{11}$ at $110{ }^{\circ} \mathrm{C}$ in a mixture of DMF and concentrated formic acid.
The colorless iron(II) formates encountered in this work are isomorphous to formates of other divalent transition metals. ${ }^{12,13}$ The intensely colored crystals, on the other hand, are unprecedented mixed-valence polyiron(II,III) framework formate materials. Whereas the anionic iron(II) formate $\mathbf{1}$ crystallizes in the rhombohedral space group $R \overline{3} c$ with $Z=6$, compound $\mathbf{3}$ crystallizes in the trigonal space group $P \overline{3} c 1$ with $Z=2$.
There are two independent iron atoms in the asymmetric unit of 3 (Figure 1). Bond valence sum (BVS) calculations ${ }^{14}$ indicate that $\mathrm{Fe}(1)$ is iron(II) (BVS 2.12, FeO_{6} octahedral volume of $12.6 \AA^{3}$) and $\mathrm{Fe}(2)$ is iron(III) (BVS 3.08, FeO_{6} volume of $10.7 \AA^{3}$). The formates bridge each $\mathrm{Fe}(1)$ to six different $\mathrm{Fe}(2)$ atoms in the anti-anti bonding mode. This results in a structure composed of alternating layers of Fe (II) with $\mathrm{Me}_{2} \mathrm{NH}_{2}{ }^{+}$cations and Fe (III) perpendicular to the unique c axis (Figure 2).

[^0]

Figure 1. Thermal ellipsoid plot of $\left(\mathrm{Me}_{2} \mathrm{NH}_{2}\right)\left[\mathrm{Fe}^{\mathrm{II}} \mathrm{Fe}^{\mathrm{III}}(\mathrm{HCOO})_{6}\right]$ (3). The cation is disordered about a D_{3} site, and only one $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bond is shown. $\mathrm{Fe}(1)-\mathrm{O}(1), 2.119(1) \AA ; \mathrm{Fe}(2)-\mathrm{O}(2), 2.0049(9) \AA ; \mathrm{Fe}(1) \cdots \mathrm{Fe}(2)$, 5.89 Å.

Figure 2. Polyhedral representation of the layered structure of $\mathbf{3}$, with Fe (II) in green, Fe (III) in ocher, and N in blue (only two representative cations are shown).

The structure of $\mathbf{1}$ is very similar to that of $\mathbf{3}$ except that there is only one crystallographic iron site and all of the cavities are occupied by $\mathrm{Me}_{2} \mathrm{NH}_{2}{ }^{+}$. The volume and $\mathrm{Fe}-\mathrm{O}$ bond lengths are $13.0 \AA^{3}$ and 2.1362 (7) \AA, respectively, in the $\mathrm{Fe}^{\mathrm{II}} \mathrm{O}_{6}$ octahedra in $\mathbf{1}$ and $10.6 \AA^{3}$ and 1.997(2) \AA, respectively, in the $\mathrm{Fe}^{\text {III }} \mathrm{O}_{6}$ octahedra of 2 .

The 3D network in 3 consists of Fe (III) surrounded by an octahedral arrangement of six nearest-neighbor Fe (II), while six Fe (III) form a trigonal prism about each octahedral $\mathrm{Fe}(\mathrm{II})$. The $\mathrm{Fe} \cdots \mathrm{Fe}$ distances are $6.04 \AA$ in $\mathbf{1}, 5.89 \AA$ in $\mathbf{3}, \sim 5.5 \AA$ in $\left[\mathrm{Fe}^{\mathrm{II}} \mathrm{Fe}^{\mathrm{II}}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)_{3}\right]^{-}$, and $5.08 \AA$ in PB. The 2D and 3D polymetal oxalates have only three neighboring metals.

The observed parameters in the room temperature (298 K) Mössbauer spectrum of $\mathbf{3}$ (Figure 3) support the structural data and are indicative of high-spin Fe (II) and Fe (III) with oxygen coordination. ${ }^{10,15}$ The magnetic susceptibility data (Figure 4) indicate that Fe (II) and Fe (III) are noninteracting at room temper-

Figure 3. Room-temperature Mössbauer spectrum (hatched marks) of powdered crystals of $\mathbf{3}$. The spectrum can be decomposed into two components, with $\mathrm{Fe}(\mathrm{II})$ in green [isomer shift $(\delta)=1.03 \mathrm{~mm} / \mathrm{s}$, quadrupole splitting $\left(\Delta E_{\mathrm{Q}}\right)=1.16 \mathrm{~mm} / \mathrm{s}$, line width $\left.(\Gamma)=0.31 \mathrm{~mm} / \mathrm{s}\right]$ and $\mathrm{Fe}($ III $)$ in ocher $\left(\delta=0.62 \mathrm{~mm} / \mathrm{s}, \Delta E_{\mathrm{Q}}=0.49 \mathrm{~mm} / \mathrm{s}, \Gamma=0.30 \mathrm{~mm} / \mathrm{s}\right)$. The black solid line is the composite spectrum.
ature but that spontaneous magnetization occurs at low temperature, including negative magnetization that has been seen in only Day and co-workers' anionic polyiron(II,III) 2D magnets. ${ }^{5,16}$

Figure 4. Plot of $\chi_{\mathrm{M}} T$ vs T for powdered crystals of $\mathbf{3}$.
The black crystals, which appear dark-purple when powdered, exhibit a very broad intervalence charge-transfer (IVCT) band ($\lambda_{\max }$ $\approx 520 \mathrm{~nm} \approx 19200 \mathrm{~cm}^{-1}$) that covers the whole visible spectrum (Figure S1 in the Supporting Information) and a more intense peak at 280 nm . The intense color is bleached when the material is dissolved in water or DMF. The polyiron(II,III) oxalates do not exhibit an IVCT band, although Lippard and co-workers' valencedelocalized diiron(II,III) paddlewheel carboxylates do ($\mathrm{Fe} \cdots \mathrm{Fe} 2.7$ A)..${ }^{17}$ The physical properties of this framework material indicate class II mixed-valence behavior in the Robin-Day classification scheme. ${ }^{18}$

Acknowledgment. We thank the University Research Committee and Chemistry Department of Emory University, the NIH
(GM47295 to B.H.H.), and the NSF (CHE 0414555 to G.C.) for financial support and the NSF [CHE-9974864 (single-crystal) and CHE-0541752 (powder)] and NIH (S10-RR07323 and S10RR13673) for support of the X-ray Crystallography Center.

Supporting Information Available: Synthetic details, UV-vis and IR spectra, and thermogravimetric and X-ray powder diffraction data for $\mathbf{3}$ and details of the crystal structures of $\mathbf{1}$ and $\mathbf{3}$ (CIF). This material is available free of charge via the Internet at http://pubs.acs.org.

References

(1) (a) Buser, H. J.; Schwarzenbach, D.; Petter, W.; Ludi, A. Inorg. Chem. 1977, 16, 2704. (b) Dunbar, K. R.; Heintz, R. A. Prog. Inorg. Chem. 1997, 45, 283.
(2) (a) Ferlay, S.; Mallah, T.; Ouahès, R.; Veillet, P.; Verdaguer, M. Nature 1995, 378, 701. (b) Entley, W. R.; Girolami, G. S. Science 1995, 268, 397. (c) Holmes, S. M.; Girolami, G. S. J. Am. Chem. Soc. 1999, 121, 5593.
(3) Janiak, C. Dalton Trans. 2003, 2718.
(4) Rao, C. N. R.; Natarajan, S.; Vaidhyanathan, R. Angew. Chem., Int. Ed. 2004, 43, 1466.
(5) (a) Mathonière, C.; Carling, S. G.; Yusheng, D.; Day, P. J. Chem. Soc., Chem. Commun. 1994, 1551. (b) Mathonière, C.; Nuttall, C. J.; Carling, S. G.; Day, P. Inorg. Chem. 1996, 35, 1201. (c) Day, P. J. Chem. Soc., Dalton Trans. 1997, 701. (d) Nuttall, C. J.; Day, P. Chem. Mater. 1998, 10, 3050. (e) Watts, I. D.; Carling, S. G.; Day, P. J. Chem. Soc., Dalton Trans. 2002, 1429.
(6) Fishman, R. S.; Clemente-León, M.; Coronado, E. Inorg. Chem. 2009, 48, 3039.
(7) (a) Wang, Z.; Zhang, B.; Otsuka, T.; Inoue, K.; Kobayashi, H.; Kurmoo, M. Dalton Trans. 2004, 2209. (b) Wang, X.-Y.; Gan, L.; Zhang, S.-W.; Gao, S. Inorg. Chem. 2004, 43, 4615. (c) Wang, Z.; Zhang, B.; Inoue, K.; Fujiwara, H.; Otsuka, T.; Kobayashi, H.; Kurmoo, M. Inorg. Chem. 2007, 46, 437. (d) Wang, Z.; Zhang, X.; Batten, S. R.; Kurmoo, M.; Gao, S. Inorg. Chem. 2007, 46, 8439.
(8) Cornia, A.; Caneschi, A.; Dapporto, P.; Fabretti, A. C.; Gatteschi, D.; Malavasi, W.; Sangregorio, C.; Sessoli, R. Angew. Chem., Int. Ed. 1999, 38, 1780 .
(9) Tian, Y.-Q.; Zhao, Y.-M.; Xu, H.-J.; Chi, C.-Y. Inorg. Chem. 2007, 46, 1612.
(10) (a) $\left(\mathrm{Me}_{2} \mathrm{NH}_{2}\right)\left[\mathrm{Fe}(\mathrm{HCOO})_{3}\right]$ (1): rhombohedral; $R \overline{3} c ; \mathrm{Z}_{2}=6 ; T=173 \mathrm{~K} ; a$ $=b=8.2310(5) \AA, c=22.399(3) \AA \AA ; V=1314.2(2) \AA^{3} ; \mathrm{R}_{1}=0.020, \mathrm{wR}_{2}$ $=0.054$. (b) $\left(\mathrm{Me}_{2} \mathrm{NH}_{2}\right)\left[\mathrm{Fe}_{2}(\mathrm{HCOO})_{6}\right](3)$: trigonal; $P \overline{3} c 1 ; Z=2 ; T=173$ $\mathrm{K} ; a=b=8.251(5) \AA, c=13.846(3) \AA ; V=816.4(2) \AA^{3} ; \mathrm{R}_{1}=0.028$, $\mathrm{wR}_{2}=0.077$.
(11) (a) Chrétien, A.; Lous, P. Bull. Soc. Chim. Fr. 1944, 11, 446. (b) Johnson, M. K.; Cannon, R. D.; Powell, D. B. Spectrochim. Acta 1982, 38A, 307.
(12) (a) $\mathrm{Fe}_{3}(\mathrm{HCOO})_{6}$ orthorhombic form: $\mathrm{Pna}_{1} ; Z=4 ; T=100 \mathrm{~K} ; a=$ 12.684(2) $\AA, b=8.189(1) \AA, c=11.485(2) \AA ; V=1194.2(3) \AA^{3} ; \mathrm{R}_{1}=$ $0.031, \mathrm{wR}_{2}=0.077$. (b) $\mathrm{Fe}_{3}(\mathrm{HCOO})_{6} \cdot$ DMF: monoclinic; $P 2_{1} / n ; Z=4, ; T$ $=173 \mathrm{~K} ; a=11.440(3) \AA, b=9.942(2) \AA, c=14.694(3) \AA, \beta=$ $91.269(3)^{\circ} ; V=1760.8(6) \AA^{3} ; \mathrm{R}_{1}=0.032, \mathrm{wR}_{2}=0.084$.
(13) (a) Viertelhaus, M.; Adler, P.; Clérac, R.; Anson, C. E.; Powell, A. K. Eur. J. Inorg. Chem. 2005, 692. (b) Fu, Y.-L.; Ji, M.; Shen, X.-L.; Ng, S. W. Acta Crystallogr. 2005, E61, m688.
(14) (a) Wills, A. S. VaList; program available from www.ccp14.ac.uk. (b) Brown, I. D.; Altermatt, D. Acta Crystallogr. 1985, B41, 244. (c) Brese, N. E.; O'Keeffe, M. Acta Crystallogr. 1991, B47, 192. (d) Brown, I. D.; Gillespie, R. J.; Morgan, K. R.; Tun, Z.; Ummat, P. K. Inorg. Chem. 1984, 23, 4506. (e) Graphics and volumes: Palmer, D. CrystalMaker, version 8; www.crystalmaker.com.
(15) Sato, T.; Ambe, F.; Endo, K.; Katada, M.; Maeda, H.; Nakamoto, T.; Sano, H. J. Am. Chem. Soc. 1996, 118, 3450.
(16) Detailed analysis of the magnetic data is in progress.
(17) (a) Lee, D.; Krebs, C.; Huynh, B. H.; Hendrich, M. P.; Lippard, S. J. J. Am. Chem. Soc. 2000, 122, 5000. (b) Lee, D.; DuBois, J. L.; Pierce, B.; Hedman, B.; Hodgson, K. O.; Hendrich, M. P.; Lippard, S. J. Inorg. Chem. 2002, 41, 3172.
(18) Robin, M.-B.; Day, P. Adv. Inorg. Chem. Radiochem. 1967, 10, 247.

JA901093B

[^0]: + Department of Chemistry, Emory University.
 * Department of Physics, Emory University.
 ${ }^{\text {§ }}$ University of Florida.

